Local cohomology multiplicities in terms of étale cohomology

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on Étale Cohomology

à 4.0 Short Comment on Sheaves, Bundles, and Representable Functors. The notion of a sheaf over a topological space X generalize that of a bundle over X . We're more-or-less aware of this. I want to spend some time looking the specifics of this generalization. I'll focus on schemes. Fix a ring A and let 1 :=A 1 be the affine line. The first thing I want to point out is that the global section...

متن کامل

Topological computation of local cohomology multiplicities

We express the Lyubeznik numbers of the local ring of a complex isolated singularity in terms of Betti numbers of the associated real link.

متن کامل

On natural homomorphisms of local cohomology modules

‎Let $M$ be a non-zero finitely generated module over a commutative Noetherian local ring $(R,mathfrak{m})$ with $dim_R(M)=t$‎. ‎Let $I$ be an ideal of $R$ with $grade(I,M)=c$‎. ‎In this article we will investigate several natural homomorphisms of local cohomology modules‎. ‎The main purpose of this article is to investigate when the natural homomorphisms $gamma‎: ‎Tor^{R}_c(k,H^c_I(M))to kotim...

متن کامل

Tame Loci of Generalized Local Cohomology Modules

Let $M$ and $N$ be two finitely generated graded modules over a standard graded Noetherian ring $R=bigoplus_{ngeq 0} R_n$. In this paper we show that if $R_{0}$ is semi-local of dimension $leq 2$ then, the set $hbox{Ass}_{R_{0}}Big(H^{i}_{R_{+}}(M,N)_{n}Big)$ is asymptotically stable for $nrightarrow -infty$ in some special cases. Also, we study the torsion-freeness of graded generalized local ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 2005

ISSN: 0373-0956

DOI: 10.5802/aif.2160